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Abstract-The phenomenon of shear locking in plate finite elements, or the loss of accuracy when
thin plates are modelled by shear deformable elements, is explained in terms of the presence of
boundary layer-type solutions to the equations of shear deformable plate theory, coupled with
existing arguments in the literature. To demonstrate this, the governing equations of Reissner shear
deformable theory were derived and reduced to two independent equations expressed in terms of a
displacement potential tP and rotational stream function'" for a transversely isotropic plate. A four
node thirty-six degree of freedom CZ continuous plate finite element which ignored the edge-effect
equation in "', was derived using an interpolation of the displacement potential tP. A similar finite
element based on classical plate theory was also shown. A square plate with simply-supported edges
was modelled using these finite elements over a wide range of span-to-thickness ratios. All results
converged rapidly to accepted solutions and did not exhibit shear-locking behavior under full
integration. A discussion on the actual cause of shear-locking and recommendations for future
development and implementation of the concepts in this study were made. © 1997 Elsevier Science
Ltd. All rights reserved.

INTRODUCTION

The interest in shear deformable plate bending theory has increased significantly over the
past twenty years primarily due to the increased use of laminated composite materials in
structural applications. These materials display low transverse (out-of-plane) shear proper­
ties which must be accounted for in many analyses. For example, the accurate calculation of
adherend displacements is essential when modelling adhesively bonded laminated composite
joints. The finite element method has similarly become an invaluable tool to the analyst for
determining the behavior of structures under many different loading configurations. As a
result many displacement-based finite elements have been developed which are capable of
modelling shear deformable behavior in plates. Unfortunately most of these elements
become very stiff when used to model thin structures, resulting in solutions which are much
smaller than the exact solution. This effect is termed shear-locking, and much effort has
been aimed at identifying and eliminating the source of the problem. Reviews of shear
deformable plate finite elements can be found in Zienkiewicz and Taylor (1991), Averill
(1989), and Averill and Reddy (1990).

The most successful technique for alleviating the problems associated with shear­
locking is through evaluating certain transverse shear coefficients of the element stiffness
matrix using a lower order numerical integration rule than that which is required to evaluate
the coefficients exactly, as discussed in Zienkiewicz and Taylor (1991). This technique is
called reduced or selective integration, and in many cases, has been used on elements which
shear-lock when exact integration is performed. An inexact integration scheme, however,
results in a rank deficient element stiffness matrix, which in turn, generates additional zero
strain deformation modes in a solution, other than the rigid body movements. These are
termed zero-energy modes and must be suppressed through stabilization techniques. All
displacement-based shear deformable plate elements of this sort fail on some occasions,
either by shear-locking or singular behavior. For this reason many researchers have directed

859



860 M. W. Taylor et al.

their attention toward developing new elements which do not exhibit locking behavior and
do not have zero-energy modes. Aside from traditional displacement-based models many
other formulations have been investigated. These include mixed, hybrid, assumed strain,
penalty and discrete Kirchhoff methods (see Averill and Reddy (1990». Despite the large
number of new elements reported in the literature, only a few have encountered some
success. An element has yet to be developed which has no ostensible defect and is both easy
to implement and computationally efficient. A better explanation of the cause of these
failures is clearly needed so that robust elements can be designed and universally put to
use.

In this study the cause of shear-locking is examined by rederiving the equations of
shear deformable plate theory (SDPT) and making finite elements based on these equations.
The complete equations of Reissner SDPT are derived using linear elasticity theory equa­
tions and the assumption that the thickness of the plate remains constant during defor­
mation. The equations are separated into two independent governing equations in terms of
the displacement potential 4> and the rotational stream function t/J for a transversely
isotropic plate. A finite element based solely on the equations involving the displacement
potential 4> was derived. The equations which included the rotational stream function t/J
are associated with the boundary layer solutions and were ignored in the derivation. A
similar finite element based on classical theory was also shown with a correction for shear
displacements. Simply-supported moderately thick to thin square plates were modelled
using these elements to examine the shear-locking phenomenon.

THEORY OF REISSNER SHEAR DEFORMABLE PLATE-BENDING

The governing equations of SDPT are derived here directly from elasticity theory
equations with a certain physical hypothesis in order to produce a consistent theory. In
contrast, others such as Hencky (1947), Reissner (1944), Reissner (1945), Reissner (1985)
and Reissner (1986), have based their theories on variational principles with initial approxi­
mations of the stress and displacement distributions through the thickness of the plate to
obtain the same results. The following derivation has been taken in part from Vasiliev
(1992) to emphasize the form that the governing equations take and show their relevance
to the finite element results. Refer to Fig. 1 for plate definitions. The three-dimensional
elasticity theory equations that are necessary for this analysis are: the equilibrium equations,

the Hookian constitutive relations for a transversely isotropic material in the x- y plane,

t xy
Yxy =(j

t xz
Yxz = G'

z,w

y,v

x,u

h
Fig. I. The definitions of geometry, displacement and loading conditions for a square plate.
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(2)

where (Y refers to properties in the out-of-plane z-direction, and the linear strain-dis­
placement relations,

(3)

along with the following boundary conditions which must be satisfied on the surfaces of
the plate,

!xzC±hj2) = !yz(hj2) = 0, o"z( -hj2) = -p, (1z(hj2) = -q. (4)

Proposed originally by Thomson and Tait (1883), the only assumption which will be made
in the present context of the theory is that the thickness of the plate remains constant
during deformation. From eqn (3) this gives,

8w
ez = 8z = O. (5)

At this point it should be noted that the contribution of Mindlin (1951) to plate-bending
theory is that the normal strain was not assumed to be zero as in (5) and in essence can be
viewed as a refinement to SDPT.

In order to satisfy the elasticity eqns (I )-(3) with the constant thickness assumption
(5) it follows that E' -+ 00 for arbitrary finite stresses (G' still remains finite however). Thus
the introduction of a material which is flexible in transverse shear, and infinitely rigid in
tension and compression in the direction of the z-axis is introduced to derive a well­
conditioned two-dimensional theory. This operation was apparently first performed in plate
theory by Kromm (1953). It follows from (5) that the deflection of the plate is w = w(x,y)
and the constitutive relations (2) become the plane-stress conditions,

2(1 +v)
Yxy = E !x)"

!xz
Yxz = G" (6)

Since the material is assumed to be absolutely rigid in the z-direction from assumption (5),
the actual distribution of shear stresses !xz and !yz through the thickness of the plate do not
in themselves influence displacements. Only the resultants of !xz and !yz in the z-direction,
given by the transverse forces,

f
h/2

Qx = !xz dz,
-h/2

(7)

are essential for the displacement field. Therefore in the context of a consistent plate theory
based on assumption (5), the use of a shear-correction factor, which is often introduced to
take into account the distribution of shear stresses through the thickness of the plate, is
unfounded.

Transforming the integrals in (7) using the mean-value theorem gives,
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(8)

where average values Sx and Sy are the actual transverse shear stresses t xz and t yz at a point
x,Y, Zs·

The following relations are obtained from (6) along with the transverse shear strain­
displacement relations in (3),

(9)

Since only the resultants Qx and Qy influence the displacements of the plate, t xz and t yz in
(9) can be replaced with Sx and Sy as given in (8). Expressions for the displacements are
obtained by integrating (9) and using w = w(x,y),

(10)

where UO and VO are the displacements of points on the mid-plane surface Z = 0 and where
ex and ey are the rotations of the normal to that plane which takes the form,

_ Qx _ ow e _ Qy _ ow
ex - c ox' y - C oy (11)

and where C = G'h is the rigidity of the plate in transverse shear. Substituting displacements
(10) into the strain-<lisplacement relations (3) and considering only strains relevant to
plate-bending (i.e., ignoring membrane effects) gives the geometric relations of the present
theory,

Using (6) and (12) the stresses become

(12)

E
t xy = 2(1+V)ZKxy . (13)

The physical relations of the theory are given by the moment resultants using (13),

f
hl2 D(I-v)

M xy = txyzdz = 2 Kxy
-h12

(14)

where D = [Eh3/12(1- v2)] is the flexural rigidity of the plate, and the transverse force
resultants from (II),
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(15)

where Y~z and Y~z are defined as average through-the-thickness transverse shear strains of
the form,

(16)

Using (14) the deformations from (13) can be eliminated and given in terms ofthe moment
resultants bringing them to their final form,

12Mxu =--z
x h3 '

12Mxy
Lxy=--Z.

h3
(17)

In order to find a similar expression for LXZ and Tyz> eqns (17) are substituted into the first
two equilibrium equations in (1) and integrated over the z-axis. Using the conditions
L XZ ( -h/2) = LyZ ( -h/2) = 0 in (4) gives expressions for the transverse shear stresses,

= ~(OMx OMxy)( _4Z
2

) = ~(OMy OMxy)( _4z
2

)
LXZ 2h ox + oy 1 h2' Lyz 2h oy + ox 1 h2 (18)

noting that the conditions Lxz(h/2) = Lyz(h/2) = 0 are satisfied due to symmetry. It is con­
venient to express L XZ and Lyz in terms of the their respective transverse force resultants by
substituting (18) into (7) to give the equilibrium equations of an element of the plate,

(19)

With these equations, (18) becomes,

(20)

The coordinate Zs of the point at which the average stresses sx and Sy operate can now be
found from (8) and (20) which gives Zs = ±h/2(2J3).

To determine the normal stress U z the last equilibrium equation in (1) is integrated
over the z-axis. Using (20) and the second condition in (4) gives,

Uz= _p_ (~+ 3z _ 2Z
3)(OQx +OQy).

2 2h h3 ox oy (21)

Satisfying the last boundary condition in (4) the last plate-element equilibrium equation
becomes,

(22)

where p = p + q. This brings (21) into the final form,
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(23)

Thus the plate-bending theory discussed here reduces to (12), (14), (15), (19), and (22)
which together give equations of the sixth-order.

Certain manipulations will now be made to the above plate-bending theory. With the
physical relations (14) and (15), and the geometric relations (12), the equilibrium equations
(19) and (22) can be written in terms of the generalized displacements w, Ox and Oy,

Lll((),)+LI2(Oy)+L13(w) = 0

L 21 (Ox) +L22 (Oy)+L23 (W) = 0

L31(Ox)+L32(Oy)+L33(W)+P = 0

where the differential operators L ij are defined as

D 02 0 1 02 0 1 1+v 02 0
L ll 0 = C ox2 + k2 oy2 -0, L 12 0 = L20 = k 2 I-v oxoy

I 00 D02 0 102 0
L l3 0 = - CL310 = - ax' L 22 0 = C oy2 + k 2 ox2 -0

I 00
LBO = - CL320 = - oy' L 33 0 = C~O

k 2 = 2C ~O = 0
2
0 + 0

2

0
D(1-v)' ox2 oy2'

(24)

(25)

This form of the plate-bending theory equations were first derived by Hencky (1947)
using the Lagrange variational principle. Using an operator procedure the generalized
displacements w, Ox and Oy can be written in terms of some function F(x, y),

a
Ox = (L 12 L 23 - L 13 L 22 )(F) = - ax L(F)

a
Oy = (L21LI3-L23Lll)(F) = - oyL(F)

D
w = (L 11 L 22 -LI2 L 21 )(F) = L(F)- C~L(F)

1
L(F) = F- -~F.

k 2
(26)

It can be shown that the first three equations in (26) identically satisfy the first two equations
in (24). From this procedure the last equation in (24) can be brought to the form,

D~~L(F) = p.

Assuming that L(F) # 0 it can be shown that (27) is essentially of fourth-order.
Introducing the function

rjJ = L(F)

eqns (26) and (27) can be written in the form

(27)

(28)
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(}y= - oY' W= 1>-Cli1>Dlili1> =p.
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(29)

As h becomes small Die -+ 0 and from (29) 1> = wand the governing differential equation
becomes that of classical plate theory. The fourth-order system (29) was derived in its
essentials by Donnell (1959) and Donnell (1976). From these equations Donnell extended
the use of transverse shear correction in beams proposed by Timoshenko (1921) to plates.
In this method the transversal deflection of the plate can be represented by the sum of the
deflection from classical theory Wc/ and a correction for shear from the solution of the
classical equations such that,

(30)

Equation (30) is an approximate solution in general since it is based on the condition that
1> = Wc/, and although 1> and Wc/ are described by the same biharmonic equation, each must
generally satisfy different boundary conditions.

Since the sixth-order system (24) was reduced to the fourth-order eqn (29) by the
substitution of (26) and (28), and recognizing that (29) is invalid for L(F) = 0 one more
second-order equation must exist to complete the theory. As well it follows from (10) and
the first two equations of (28) that the function 1> is the potential of the displacement field
in a plane z = const. Therefore from continuum mechanics the rotational plane motion can
be described by the introduction of a stream function t/J which satisfies

(31)

Substituting these expressions into the last equation of (24) solves the homogeneous differ­
ential equation in (29). It also follows from (29) that

a a
-L(t/J) = 0, - L(t/J) = 0
ox oy

(32)

or L(t/J) = t/Jo. From (31) it can be seen that the constant t/Jo does not affect the rotation
field and can be assumed to be zero. Thus the final second-order equation becomes

(33)

This equation was derived in various forms by a number of authors [e.g., Hencky (1947),
Reissner (1944), Thomson and Tait (1883), Kromm (1953), and Donnell (1976)]. Equation
(33) determines a state of stress that decays rapidly with increasing distance from the edge
and is thus termed the edge-effect equation. The solution to this equation for the stream
function t/J is the so-called 'boundary layer solution'.

Thus plate-bending theory reduces to the sixth-order system,

with the rotation angles and deflection given by

() _ 01> + ot/J () __ 01> _ ot/J w = 1>- Deli1>.
x - - ox oy , y - oy ox'

(34)

(35)

The system (34) and (35) is known as the Reissner shear deformable plate theory. It can be
shown that the transverse force and moment resultants take the form
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(36)

Some important remarks about the edge-effect equation in (33) should be made at this
point. As previously mentioned, the solution to this equation is the boundary layer solution
which decays rapidly with increasing distance from the edge of the plate. As an example,
consider the plate in Fig. 1 and assume that it is infinitely long in the x-direction, and
loaded in such a way that the stress-strain state does not depend on x. Equation (33) then
becomes

(37)

where y = y/l and

(38)

for an isotropic plate. The solution to (37) is of the form,

(39)

where 0 ~ y ~ 1 and Cj, C2 are constants of integration that should be found from the
boundary conditions at y = 0 and y = 1. For a plate with l/h = 100 (well within the range
of thin plate behavior), the first exponent in the solution (39) is of the order 10- 150

•

Traditional numerical techniques identify this number with zero and will thus fail to find
the constants C. and C2• This is the mathematical mechanism which causes numerical
methods, including the finite element method, to lose accuracy when dealing with problems
that entirely involve boundary layer solutions.

It has been well documented that the physical mechanism of shear-locking in finite
element analysis of plates is associated with the elastic energy of transverse shear strains in
the functional of the total potential energy [e.g., Zienkiewicz and Taylor (1991)]. In order
to have a finite element which does not shear-lock the formulation must be able to handle
the constraint of zero shear strain in the limit that the thickness of the plate goes to zero.
Using the notation of this study these constraints take the form,

o ow
Yxz = Ox+ ox -+ 0, (40)

as h -+ O. Shear locking results when these conditions are not satisfied. Most traditional
displacement-based finite elements violate the conditions in (40) when fully integrated.
Clearly these elements do not contain an explicit form of rP and t/J in their displacement and
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rotation fields. Using the expressions in (15) and (36), the transverse shear strains in the
present context of SDPT take the form,

(41)

Here the first term in both equations are proportional to h2 and clearly goes to zero when
h becomes small for thin plates. The second terms however do not vanish in the thin plate
limit. Note that these second terms are derivatives of the stream function t/J. Now it can be
seen from eqns (34) and (35) that the shear deformation in SDPT demonstrates itself in
two ways. First, it follows from the last equation in (35) that SDPT influences the plate
deflections. Secondly, it induces the boundary layer solutions described by the second
equation in (34). Calculations by Vasiliev (1992) have shown that the second effect is
important only for special problems (e.g., pure torsion or contact problems). In most cases
only the first effect, the influence of shear deformation on displacements, needs to be taken
into account in calculations.

With this in mind it seems reasonable to ignore the boundary layer solution and derive
a plane finite element which is based on this approximation. The transverse shear strains
are now of the form

(42)

which go to zero in the thin plate limit. An analogous transformation should be made to
eqns (35) which reduce to

(43)

It should be emphasized that eqns (42) and (43) are approximate since the boundary layer
solutions were ignored. There exists however at least one boundary problem in plate theory
for which these equations are exact.

Consider a simply supported plate such that the conditions at the edges x = const are
w = 0, ()y = 0, and M x = °and at edges y = const are w = 0, ()x =°and My = 0. Using
eqns (35) and (36), these conditions can be transformed to

t/J = 0, /!t/J = 0, ~~ =° and t/J = 0, /!t/J = 0, :y = 0, (44)

respectively. Thus the function t/J(x,y) should satisfy the homogeneous eqn (33) and bound­
ary conditions (44). This boundary value problem has only the trivial solution t/J(x,y) == °
and thus eqns (42) and (43) are exact for a simply supported plate.

PLATE BENDING FINITE ELEMENTS

Development of displacement based shear deformable plate-bending finite elements
have traditionally been based on interpolations ofgeometric variables such as displacements
and rotations. In doing so these finite elements cannot be explicitly separated into the two
effects of shear deformation as previously mentioned. In this study a SDPT finite element
was formulated which ignored the existence of the boundary layer solutions. In this deri­
vation the fundamental variable to be interpolated is t/J as defined in the previous section.
A classical finite element formulation is also shown here to compare results with the SDPT
element.
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SDPT element
The strain energy of a plate element governed by (29) is given by,

u = ~ f fSTDSdXdY

where,

D vD 0 0 0
Kx

vD D 0 0 0
Ky

Kxy and D= 0 0
D(l-v)

0 08=
2

y~z
0 0 0 C 0

y~z 0 0 0 0 C

(45)

(46)

Substitution of the geometric relations (12), and the definitions ofshear strains and rotations
in (42) and (43) (which ignore the boundary layer solution) into the generalized strain
matrix gives the strain energy in terms of rjJ where

8= (47)

which contains up to third derivatives of rjJ. In order to satisfy inter-element compatibility
the interpolation functions for ¢ must be at least C2 continuous. In other words deflection
and rotations can only be continuous across element boundaries when up to second
derivatives of ¢ are continuous. An interpolation which satisfies these requirements is the
rectangular four node 36 degree-of-freedom element of Bogner et al. (1965). Their deri­
vation is modified here to satisfy eqns (43). An orthogonal natural element coordinate
system ~ -11 is chosen for this derivation such that ~ and 11 are collinear with the x and Y
directions respectively as shown in Fig. 2. The element geometry is modelled by linear
Lagrangian shape functions of the form

4

x=" N'!'x~ I e j

i=1

4

and Y = L N~Yei
i~1

where Xeand Ye are the location of the element corners in global coordinates and the shape
functions N~ are given by

NT = W-~)(l-11)

Nr = W+ ~)(1-11)
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11=1 Xe3.Ye3

L~
Y

Lx
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Xe1.Ye1 \ 11=-1 Xe2tYe2

nodal d.o.1.: t t,x .,y "xy t,xx t,yy "xxy t,xyy "xxyy
Fig. 2. The geometry and natural coordinate system of the 4-node 36 degree-of-freedom plate

element.

Nt = ~(l +~)(I +f/)

Nt = W-~)(I +f/).

Transformation of derivatives from natural to global coordinates are performed using the
Jacobian elements J II = 8x/8~ and J22 = 8y/8" such that

8 I 8 8 I 8 82 I 82 82 1 82 82 I 02

OX J 11 8~' 8y = J22 Of/' OX oy = J11 J22 o~ 0"ox2 = Jf 1 0~2' oy2 = J~2 8f/2

03 I 03 83 03 83 I 03 03 03

ox3 = JL 0~3' ol = J~2 0f/3 0X2oy = JLJ22 oe Of/' 8xol = J1J~2 O~ 0f/2

04 84

---------
8x2oy2 Jf 1J~2 8~2 8,,2

Complete quintic polynomial trial functions in the variables ~ and" are assumed for the
interpolation of rjJ. The nodal degrees-of-freedom,

expressed in terms of derivatives in natural coordinated are located at element comers such
that

36

rjJ(~,,,) = I N/);
i=1

(48)

where N; are the interpolation function and .5; are the degrees-of-freedom. The generalized
strains (47) are thus given in terms of the nodal degrees-of-freedom .5; according to,

8 = Db'

where B is a five-by-thirty-six matrix containing the Jacobian elements and derivatives of
the interpolation functions. The degrees-of-freedom .5; are converted into nodal degrees­
of-freedom,
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¢ ¢,x ¢,y ¢,Xy ¢,xx ¢,yy ¢,xxy ¢,xyy ¢,XXyy

expressed in global coordinates by the transformation

~ = T~'

where T is a diagonal transformation matrix of the form

1 0

o J 1J

T=

o 0

The stiffness matrix is therefore given by

o
o

(49)

where IJI = J IIJ22• The integrals in (49) are calculated exactly using a six-point Gaussian
quadrature rule. The stiffness system for the plate element is therefore given by

P=k~

where P is the generalized load vector. For the case of a uniformly distributed load p, the
load vector is derived from the work performed on the plate and is given by

(50)

where the components of the two vector ware

(51)

The integrals in (50) are integrated exactly by at least a three-point Gaussian quadrature
rule.

Assembly and the solution of multiple elements is performed in the usual manner [e.g.,
Cook et al. (1989)]. Upon solving the assembled system, transverse displacements in an
element can be calculated at a point (~, 11) from

where w is given by (51).

Classical plate element
A finite element based solely on classical plate theory was derived in a similar fashion

as the shear deformable finite element above. This formulation is identical to the classical
element of Bogner et al. (1965) except that a different natural element coordinate system
was used. For this classical case DIC~ 0 and ¢ is replaced by Wc/ everywhere along with
the changes
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82
wc/

---

D(I:-')]

8x

D= [,:

vD

.{} 82
wc/

and
D

---
8y 2

Kxy 0
-2 8

2
wc/

8x8y

in (46). Although it can be seen that the classical element only requires C l continuity the
higher order C2 continuous interpolations in (48) were used to directly compare results
with the shear deformable element solutions using (30). The components of the row vector
win (51) are now given by

and the classical transversal displacements are given by (52).
The classical plate element can also be used to give an approximate evaluation of the

shear deformation effect by substituting the solution for Wc/ obtained using this element
into the expression for w in (30).

RESULTS

As a numerical example, consider a uniformly loaded simply-supported isotropic
square plate. This configuration is convenient for two reasons. First, the boundary layer
effect does not occur. Thus the results obtained from the SDPT element, which ignores the
boundary layer solution, can be directly compared with the exact solution of the problem.
It should be emphasized that the boundary layer effect does not occur only for a properly
formulated boundary problem (i.e., for a rectangular domain with boundary conditions
(44». In traditional displacement-based plate finite elements the boundary conditions do
not explicitly or implicitly coincide with (44). The boundary layer therefore does occur with
these elements, and since polynomial interpolation functions cannot properly model this
effect, the inconsistency of the boundary problem results in shear-locking behavior.

The second reason to use this simply-supported plate configuration is that an exact
solution can be found for both the classical and shear deformable plate theories using the
Navier method in Timoshenko and Woinowsky-Krieger (1959). Consider a rectangular
domain 0 ::::;; x ::::;; a, 0 ::::;; y ::::;; b, and present functions cP(x,y) and 1/I(x,y) in the form of a
double Fourier series

00 00

cP(x,y) = L L cPmn sin AmX sin AnY
m=1 n=1

00 00

1/I(x,y) = L L 1/ImncosAmXCOSAnY
m=1 n=1

(53)

where Am = m1tja, An = n1tjb, and where cPmn and 1/Imn are constant coefficients. Clearly each
term of the second series in (53) satisfies boundary conditions (44). A uniform pressure Po
decomposed in a similar series takes the form,

16p 00 00 1
p(x,y) = _0 L L -sinAmxsinAny.

1t2 m=1 n=l mn
(54)

Substituting series (53) and (54) into eqns (34) and solving for the unknown coefficients
cPmn and 1/Imn gives the exact solution to the problem where
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(55)

Indeed this shows that l/I(x,y) == O. The plate deflections are found by substituting (53) and
(55) into the last equation in (35) to give

The Navier solution for classical plate theory is obtained by setting C -+ 00 in (56).
The conditions for a simply-supported edge x = constant when neglecting the edge­

effect equations are given by

D
w = <jJ - - A<jJ = 0

C

o<jJ
<jJ = --=0

y oy

(57)

which are all identically satisfied when

(58)

along that edge. Similarly the conditions for the classical theory are

(59)

Similar results are obtained for the edge y = constant.
A plate with these simply-supported boundary conditions on all edges was modelled

by the shear deformable and classical theory elements previously described. Due to sym­
metry only one-quarter of the plate was modelled using a single element. The nodal fixity
conditions for both cases are identical and are given in Fig. 3. It can be seen that the
enforcement of both the geometric boundary conditions (i.e., edge displacement and tan­
gential rotation) and the force boundary conditions (i.e., edge normal moments) can be
performed simultaneously using (58). The non-dimensionalized center deflections ofa plate
IV = WD/p/4 with v = 0.3 over a wide range of span-to-thickness ratios were calculated. All
numerical integrations were performed using a six-point Gaussian quadrature rule in double
precision.

The center transversal deflection solutions for various span-to-thickness ratios are
plotted in Fig. 4. It can clearly be seen that the use of one shear deformable element to
model one-quarter of the plate gives excellent converged results and do not exhibit the
phenomenon of shear-locking. The error in the finite element solution is compared with the
exact solution given by (56) is less than 0.01 % for the shear deformable element for all
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span-to-thickness ratios. Refining the density of the mesh gave identical results. Preliminary
results for clamped plates as well show that the SDPT finite element which ignores the
boundary layer effect, does not shear lock.

Solutions based on the classical finite element with shear correction according to (30)
practically coincide with the SDPT solutions, as shown in Fig. 4. This seems quite reasonable
since boundary conditions (57) and (59) can be reduced to the same form 4J = o24J/or = 0
and Wc/ = o2wcIiox2= 0, respectively, thus making eqn (30) exact for the simply-supported
plate. Although this method is only approximate for clamped plates, preliminary results
suggest that these solutions are close to the SDPT finite element solutions.

DISCUSSION

Neglecting the existence of the edge-effect equation within the context of SDPT per­
mitted the derivation of a plate finite element in 4J which did not shear lock. The next
logical step would be to incorporate the edge-effect equations into the finite element by
interpolating with respect to t/J in some way. Since the two differential equations in (34) are
independent, a superposition oftwo finite elements, one with respect to 4J as before and the
other in t/J would be possible. The two elements would be connected in the boundary
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conditions from the definitions of displacement and rotations. In this case all governing
equations would be included and the results should converge to exact solutions. To incor­
porate these equations with a numerical technique, the boundary layer effect should be
singled out and described analytically with the aid of solutions similar to (39).

From the work of Donnell the equations without the boundary layer solution were
equivalent to solving the classical theory problem and using a shear correction on the
displacements as in eqn (30). The solutions obtained by this second method converged for
all test cases in this study and thus holds much promise for future implementation to plate
problems.

The use ofthe above elements, which are C2 continuous, poses an even greater challenge
than the already problematic C1 continuous plate elements when extending the solutions to
non-rectangular plate geometries. The use of these elements are currently limited to rec­
tangular plate applications only.

Preliminary work involving the 16 degree-of-freedom C continuous interpolation of
Bogner et al. (1965) to model the same system (29) shows promising results which do not
shear lock. This may suggest that a lower order continuity element as is found in many
finite element libraries may be sufficient to model plate displacements with shear correction
at the expense of slower convergence rates. Further work in this area is needed to make the
concepts in this study attractive for general finite element programs.

As mentioned previously, the separation of the governing relations for SDPT into the
two independent differential equations for the fundamental unknowns 4J and l/J can be done
only for transversely isotropic material properties. For orthotropic plates, however, the
problem is much more complicated and the exact separation ofthe governing relations into
independent quantities is not possible. The equations do, however, have two solutions, a
rapidly varying solution that corresponds to the boundary layer effect and a slowly varying
solution that determines the ground state of the plate as in the transversely isotropic case.
This coupling makes it nearly impossible to derive a plate finite element which neglects the
edge-effect completely. However, through simple asymptotic considerations, the separation
of the two solutions can be done approximately, as in Vasiliev (1992), and an element can
therefore be constructed in a similar fashion as proposed for the transversely isotropic case.

CONCLUSIONS

The governing equations of Reissner shear deformation theory were derived from
linear elasticity equations and the assumption that the thickness of the plate remains
constant during deformation. The equations were separated into two independent governing
equations expressed in terms of the displacement potential 4J and the rotational stream
function l/J for a transversely isotropic plate. The fourth-order biharmonic equation in
terms of 4J determined the ground state of the deflections of a plate while the second order
equation in l/J has a boundary layer type of solution.

A four node thirty-six degree of freedom C2 continuous plate finite element was derived
using the governing equation and interpolation in terms of 4J only. As well, a similar finite
element based on classical plate theory was derived and displacements were corrected for
shear using the method of Donnell.

An isotropic square plate with simply-supported boundary conditions was modelled
using these finite elements for span-to-thickness ratios varying from thin to moderately
thick. Convergence to the exact SDPT solutions were obtained for all span-to-thickness
ratios with only one SDPT or classical element and no shear-locking was observed. A
discussion on the actual cause of shear-locking and recommendations for future devel­
opment and implementation of the concepts of this study were made.
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